TARGET MATHEMATICS
Jhe Excellance Key...Dr. AGYAT GUPTA
(M.Sc, B.Ed., M.Phill, P.hd)

CODE:0501- AG-TS-1

REG.NO:-TMC -D/79/89/36/63

General Instructions :-

- (i) All Question are compulsory :
- (ii) This question paper contains **36** questions.
- (iii) Question 1-20 in PART- A are Objective type question carrying 1 mark each.
- (iv) Question 21-26 in PART -B are sort-answer type question carrying 2 mark each.
- (v) Question 27-32 in PART -C are long-answer-I type question carrying 4 mark each.
- (vi) Question 33-36 in PART -D are long-answer-II type question carrying 6 mark each
- (vii) You have to attempt only one if the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 8 printed pages.
- (x) Code number given on the right-hand side of the question paper should

be written on the title page of the answer-book by the candidate.

Time : 3 Hours

Maximum Marks : 80

MATHEMATICS

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

Visit us at www.agyatgupta.com

PRE-BOARD EXAMINATION 2019 -20

PART – A (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four

choices (A) , (B) , (C) &(D) out of which ONLY ONE is correct .

Q.1	$A = \begin{bmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{bmatrix}, B = \begin{bmatrix} 2 & 4 \\ 0 & 1 \\ -1 & 2 \end{bmatrix}, C = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \text{ then the expression which is not}$			
	$\begin{bmatrix} A = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -2 & 5 \end{bmatrix}, \begin{bmatrix} D = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 2 \end{bmatrix}, \text{ then the expression which is not}$			
	defined is			
	(a) $A^2 + 2B - 2A$ (b) CC' (c) $B'C$ (d) AB			
Q.2	If $\mathbf{r} \cdot \mathbf{i} = \mathbf{r} \cdot \mathbf{j} = \mathbf{r} \cdot \mathbf{k}$ and $ \mathbf{r} = 3$, then $\mathbf{r} =$			
	(a) $\pm 3(\mathbf{i} + \mathbf{j} + \mathbf{k})$ (b) $\pm \frac{1}{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$			
	(c) $\pm \frac{1}{\sqrt{3}} (\mathbf{i} + \mathbf{j} + \mathbf{k})$ (d) $\pm \sqrt{3} (\mathbf{i} + \mathbf{j} + \mathbf{k})$			
Q.3	From a pack of 52 cards two are drawn with replacement. The			
	probability, that the first is a diamond and the second is a king, is			
	(a) $\frac{1}{26}$ (b) $\frac{17}{2704}$ (c) $\frac{1}{52}$ (d) None of these			
	(a) $_{26}$ (b) $_{2704}$ (c) $_{52}$ (d) None of these			
Q.4	The distance of the point (4, 3, 5) from the <i>y</i> -axis is			
	(a) $\sqrt{34}$ (b)5 (c) $\sqrt{41}$ (d) $\sqrt{15}$			
Q.5	If $4\sin^{-1} x + \cos^{-1} x = \pi$, then X is equal to			
	(a) 0 (b) $\frac{1}{2}$ (c) $-\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{2}}$			

Target Mathematics by- Dr.Agyat Gupta2visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony
Ph. : 4010685(O), 7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

	visit us at www.agyatgupta.com				
Q.6	The probability of hitting a target by three marksmen are $\frac{1}{2}, \frac{1}{3}$ and				
	$\frac{1}{4}$ respectively. The probability that one and only one of them will				
	hit the target when they fire simultaneously, is				
	(a) $\frac{11}{24}$ (b) $\frac{1}{12}$ (c) $\frac{1}{8}$ (d) None of these				
Q.7	$\int \frac{x dx}{1 - x \cot x} =$				
	(a) $\log(\cos x - x \sin x) + c$ (b) $\log(x \sin x - \cos x) + c$				
	(c) $\log(\sin x - x \cos x) + c$ (d)None of these				
Q.8	The necessary condition for third quadrant region in xy-plane, is				
	(a) $x > 0$, $y < 0$ (b) $x < 0$, $y < 0$ (c) $x < 0$, $y > 0$ (d) $x < 0$, $y = 0$				
Q.9	The perpendicular distance of the point $(2, 4, -1)$ from the line $x+5$ $y+3$ $z-6$.				
	$\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ is				
	(a) 3 (b) 5 (c) 7 (d) 9				
	Fill in the blanks (Q11 – Q15)				
Q.10	If $M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $M^2 - \lambda M - I_2 = 0$, then $\lambda = \dots$				
Q.11	The relation $R = \{(a,b): a^2 - 4ab + 3b^2 = 0; a, b \in R\}$ is				
Q.12	If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$, then $\frac{dy}{dx} =$				
Q.13	If $\begin{bmatrix} 1 & -1 & x \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 0$, Then $x =$.				
Q.14	The volume of a spherical balloon in increasing at the rate of 25 cubic				
Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmir bai colony					

Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

Visit us at www.agyatgupta.com

visit us at www.agyatgupta.com						
centimeters per second. The rate of change of its sur	face at the instant					
when its radius is 5 cm is	when its radius is 5 cm is					
OR	OR					
The tangent to the curve $y = ax^2 + bx$ at $(2, -8)$ is	The tangent to the curve $y = \alpha x^2 + bx$ at $(2, -8)$ is parallel to x-axis.					
Then $a = \dots \& b = \dots$						
Q.15 If \vec{a} and \vec{b} are two non-collinear unit vectors such that	If \vec{a} and \vec{b} are two non-collinear unit vectors such that $\left \vec{a} + \vec{b} \right = \sqrt{3}$, Then					
$(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) =$	$(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) =$					
OR						
For two non zero vector \vec{a} and \vec{b} write when $ \vec{a} + \vec{b} = \vec{a} + \vec{b}$	\overrightarrow{b} holds if					
(Q16 - Q20) Answer the following	questions					
Q.16 If A and B are invertible matrices of order 3, $ A = 2$ a						
then B						
Q.17 Evaluate: $\int_0^{\pi/2} \frac{\cos^2 x dx}{1 + 3\sin^2 x}.$						
Q.18 Evaluate: $\int \frac{dx}{\sqrt{\sin^3 x \sin(x+\alpha)}}$.						
Q.19 Evaluate: $\int \frac{(\sin x - x \cos x) dx}{x(x + \sin x)}$.						
OR						
Evaluate: $\int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx$						

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com						
	equation $\frac{d}{dx} [(\frac{d^2 y}{dx^2})^4] = 0$.					
PART – B (Question 21 to 26 carry 2 mark each.)						
Q.21	Prove that: $\tan^{-1}\left(\frac{6x-8x^3}{1-12x^2}\right) - \tan^{-1}\left(\frac{4x}{1-4x^2}\right) = \tan^{-1}2x$.					
	OR					
	Consider $f: R - \left\{-\frac{4}{3}\right\} \rightarrow R - \left\{\frac{4}{3}\right\}$, given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is					
	bijective. Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$.					
Q.22	If $y = \tan^{-1}\left(\frac{x}{a}\right) + \log \sqrt{\frac{x-a}{x+a}}$: prove that $\frac{dy}{dx} = \frac{2ax^2}{x^4 - a^4}$.					
Q.23	Find the intervals in which the function f defined by					
	$f(x) = -2x^3 - 9x^2 - 12x + 1$ is(i) strictly increasing(ii) strictly decreasing.					
Q.24	$f(\mathbf{x}) = -2x^3 - 9x^2 - 12x + 1 \text{ is(i) strictly increasing(ii) strictly decreasing .}$ If $\vec{\mathbf{a}} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\vec{\mathbf{b}} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\vec{\mathbf{c}} = 7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}$, then find the area					
	of the parallelogram having diagonals $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$. OR					
	Let $\vec{a} = 2\vec{i} + \vec{k}$, $\vec{b} = \vec{i} + \vec{j} + \vec{k}$ and $\vec{c} = 4\vec{i} - 3\vec{j} + 3\vec{k}$ be three vectors, find a					
	vector \vec{r} which satisfies $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \bullet \vec{a} = 0$.					
Q.25	Find the symmetrical form, the equation of the line $2x-2y+3z-2=0, x-y+z+1=0.$					
Q.26	A bag contains 5 red balls and 3 black balls three balls are drawn one by one without replacement. What is the probability that at least one of the three balls be black if the first balls are red?					
visitu	Target Mathematics by- Dr.Agyat Gupta Is: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony					

Ph.: 4010685(O), 7000636110(O) Mobile: 9425109601(P)

Visit us at www.agyatgupta.com **PART - C** (Question 27 to 32 carry 4 mark each.) **Q.27** $\left| \text{If } f: R - \left\{ \frac{7}{5} \right\} \to R - \left\{ \frac{3}{5} \right\} \text{ be defined as } f(x) = \frac{3x+4}{5x-7} \& g: R - \left\{ \frac{3}{5} \right\} \to R - \left\{ \frac{7}{5} \right\}$ be defined as $g(x) = \frac{7x+4}{5x-3}$. Prove that $gof = I_A & (fog) = I_B$ where $B = R - \left\{\frac{3}{5}\right\} \& A = R - \left\{\frac{7}{5}\right\}.$ Find also $g^{-1}, f^{-1} \& (gof)^{-1}.$ Q.28 Find the value of 'a' for which the function f defined as f(x) = $\left| a \sin \frac{\pi}{2} (x+1) \right|, \quad x \le 0$ $\int \frac{\tan x - \sin x}{x^3}, \quad x > 0$ is continuous at x = 0. OR If $y = x^x$, prove that $\frac{d^2 y}{dx^2} - \frac{1}{v} \left(\frac{dy}{dx}\right)^2 - \frac{y}{x} = 0$. Q.29 Find the particular solution of the differential equation $(xdy - ydx)y \cdot \sin\left(\frac{y}{x}\right) = (ydx + xdy)x \cos\frac{y}{x}$, given that $y = \pi$ when x = 3. Q.30 Evaluate : $\int (e^{3x} + 7x - 5) dx$ as a limit of sums. OR Evaluate : $\int \frac{\tan x + \tan^3 x}{1 + \tan^3 x} dx$. In a hockey match, both team A and B scored same number of goals up Q.31

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

Visit us at www.agyatgupta.com

Visit us at www.agyatgupta.com			Visit us at www.agyatgupta.com		
the captains to thro captain gets a six f			2y = 2, $y - x = 1$ and $2x + y = 7$. A poster is to contain 72sq. cm. of printed matter . The margins at the top and bottom are to be 4 cm each and at the sides 2 cm each side wide. Find the dimensions if total area of the poster is minimum . OR		
again but if it shows probability of the ev given that 'there is a Q.32 An aeroplane can c	OR Consider the experiment of tossing a coin. If the coin shows head, toss it again but if it shows tail, then throw a die. Find the conditional probability of the event that 'the die shows a number greater than 4' given that 'there is at least one tail'. An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for the airline. What is the maximum profit?		Water is running into a conical vessel ,15 cm deep and 5 cm in radius , a the rate of 0.1 cm ³ / sec . When the water is 6cm deep, find at what rate is (i) the water level rising ? (ii) the water –surface area increasing ? (iii) the wetted surface of the vessel increasing ? Find the vector equation of the planes through the intersection o $(2\hat{i}+6\hat{j})+12=0$ and $\bar{r}.(3\hat{i}-\hat{j}+4\hat{k})=0$ which are at a unit distance		
for executive class. to travel by econom many tickets of eac			from the origin. Hence find the distance of the plane thus obtained from the plane $2x - 4y + 4z - 9 = 0$. ********//********		
PART – D (Question 33 to 36 carry 6 mark each.)			त्र बिना शिक्षा प्राप्त किये कोई व्यक्ति अपनी परम ऊँचाइयों को नहीं छू सकता.		
Q.33 If $x \neq y \neq z$ and $+zx$) = x+y+z.	$\begin{vmatrix} x & x^{3} & x^{4} - 1 \\ y & y^{3} & y^{4} - 1 \\ z & z^{3} & z^{4} - 1 \end{vmatrix} = 0$ then prove that xyz(xy +yz)				
unit matrix of order	OR we that $(aI + bA)^n = a^n I + na^{n-1}bA$, where I is the 2 and n is a positive integer. ind the area of the triangle bounded by the lines x +				
Q.34 Using integration, f	and the area of the triangle bounded by the lines $x + \frac{1}{2}$				

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

Target Mathematics by- Dr.Agyat Gupta

 Target Mathematics by- Dr.Agyat Gupta
 8

 visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>